International Association of Educators   |  ISSN: 1309-0682

Orjinal Araştırma Makalesi | Akdeniz Eğitim Araştırmaları Dergisi 2015, Cil. 9(17) 1-8

Learning as a Fuzzy Structure: New Challenges for Educational Evaluation

José A. González C. & Ronald A. Manríquez P.

ss. 1 - 8   |  Makale No: mjer.2015.001

Yayın tarihi: Haziran 01, 2015  |   Okunma Sayısı: 105  |  İndirilme Sayısı: 662


Özet

Recognizing the inability to accurately measure learning, we propose a new quantification tool. We understand the quantification of learning as a fuzzy structure; this is more general than the conventional quantification. This concept opens up new lines of research, analysis and modeling. It is an additional step in understanding the phenomenon of learning.

Anahtar Kelimeler: Fuzzy structure; quantification of learning; evaluation


Bu makaleye nasıl atıf yapılır?

APA 6th edition
C., J.A.G. & P., R.A.M. (2015). Learning as a Fuzzy Structure: New Challenges for Educational Evaluation . Akdeniz Eğitim Araştırmaları Dergisi, 9(17), 1-8.

Harvard
C., J. and P., R. (2015). Learning as a Fuzzy Structure: New Challenges for Educational Evaluation . Akdeniz Eğitim Araştırmaları Dergisi, 9(17), pp. 1-8.

Chicago 16th edition
C., José A. González and Ronald A. Manríquez P. (2015). "Learning as a Fuzzy Structure: New Challenges for Educational Evaluation ". Akdeniz Eğitim Araştırmaları Dergisi 9 (17):1-8.

Kaynakça
  1. Acampora, G. Fenza, G. Muñoz, E. Romera, B. (2010). Mejoras en el uso de aprendizaje con árboles fuzzy: un ejemplo de su aplicación en la toma de decisiones de un sistema coordinado. ESTYLF, Huelva. pp 643-648. [Google Scholar]
  2. Arabpour, A., Tata, M.(2008). Estimating the parameters of a fuzzy linear regression model. Iranian Journal of Fuzzy Systems, pp 1-19. [Google Scholar]
  3. Arellano-Valle,R. Genton, M.(2005). On fundamental skew distributions. Journal of Multivariate Analysis no.96, pp. 93-116. [Google Scholar]
  4. Barros, L. Bassanezi, R. (2010). Tópicos de lógica fuzzy e biomatemática. Segunda edición. UNICAMP-IMECC. [Google Scholar]
  5. Cheng, C., Mon, D. (1993). Fuzzy system reliability analysis by interval of confidence, Fuzzy Sets and Systems, pp 29-35. [Google Scholar]
  6. Chiang, J. (2001). Fuzzy linear programming based on statistical confidence interval and interval-valued fuzzy set, European Journal of Operational Research, pp 65-86. [Google Scholar]
  7. Choi, S., Kim, K.(2006). Censored fuzzy regression model, Journal of Korean Mathematical Society, pp 623-634. [Google Scholar]
  8. Coppi, R., Gil, M., Kiers, H.(2006). The fuzzy approach to statistical analysis, Computational Statistics and Data Analysis, pp 1-14. [Google Scholar]
  9. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), pp 297–334. [Google Scholar]
  10. Dubois, D.(2006) Possibility theory and statistical reasoning,Computational Statistics and Data Analysis, pp 47-69. [Google Scholar]
  11. Fernández, A. (1997). Uso de la Distribución normal en la evaluación del aprendizaje. Estud. pedagóg., no.23, pp.51-63. [Google Scholar]
  12. García, S. (2002). La Validez y la Confiabilidad en la Evaluación del Aprendizaje desde la Perspectiva Hermenéutica. Rev. Ped, vol.23, n.67, pp. 297-318. [Google Scholar]
  13. Geyer, C., Meeden, G. (2005). Fuzzy and randomized confidence intervals and p-values, Statistical Science, pp 358-366. [Google Scholar]
  14. Ojeda, M. (2003). La modelación estadística. Universidad Veracruzana, Universidad Juárez Autónoma de Tabasco. México. pp 71-76. [Google Scholar]
  15. Parchami, A., Mashinchi, M., Maleki, H. (2006). Fuzzy confidence interval for fuzzy process, Journal of intelligent and Fuzzy Systems, pp 287-295. [Google Scholar]
  16. Soto, C. Jimenez, C. (2011). Aprendizaje supervisado para la discriminación y clasificación difusa. Dynarev.fac.nac.minas. vol.78, n.169, pp. 26-33. [Google Scholar]
  17. Tanaka, H. Uejima, S. Asia, K. (1982). Linear regression analysis with Fuzzy model, IEEE Trans. Systems Man.12 (6) pp 903–907. [Google Scholar]
  18. Wunsche, A., Nather, W.(2002). Least-squares fuzzy regression with fuzzy random variables, Fuzzy Sets and Systems, pp 43-50. [Google Scholar]
  19. Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, vol1, pp 3-28. [Google Scholar]